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Computational Models 
of Prefrontal Cortex

Two Complementary Approaches

Etienne Koechlin and Xiao-Jing Wang1

Abstract

The frontal lobe cortex is among the brain regions that evolve the most across mam-
mals. In rodents, the prefrontal cortex (PFC) comprises the  orbitofrontal cortex, the 
 anterior cingulate complex (ACC), as well as the prelimbic and infralimbic areas in the 
medial wall. In primates, the PFC has evolved with the addition of the lateral PFC. In 
humans, the PFC features the further development of its most anterior part, especially in 
the lateral sector, and is often named the  frontopolar cortex. Human patients with PFC 
lesions exhibit little impairments in basic sensorimotor, memory, learning, and lan-
guage functions. Thus, the PFC function fulfi lls additional, more abstract functional de-
mands. Its characterization has long remained elusive through the use of poorly defi ned 
notions such as executive/cognitive control, working memory, or  cognitive fl exibility. 
Here, computational models are shown to overcome these theoretical shortcomings by 
providing more precise accounts, predictions, and simulations of PFC function at the 
neuronal and behavioral levels. Two approaches have been developed in neurobiology 
and cognitive neuroscience, respectively. Time is ripe to integrate the two for a cross-
level understanding of PFC function.

Introduction

Computational approaches of prefrontal cortex (PFC) function may start from 
a simple postulate: PFC function has evolved to enhance animal adaptive 
behavior. From that respect, computational models of PFC function should 
address two key overarching issues: (a) how PFC basic cognitive operations 
emerge from the neural networks that have evolved in the PFC and (b) which 

1 Alphabetical listing: both authors contributed equally to this work.
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are the key functional limitations of basic adaptive processes external to the 
PFC that PFC processes overcome in the service of enhanced adaptive be-
havior. The fi rst issue is addressed through  neural network models of PFC 
operations, primarily based on  neurophysiology of single cells from animals 
performing a task and neural circuit dissection. The second issue is addressed 
through computational cognitive models of PFC function, primarily informed 
by behavior and brain imaging like fMRI, in the tradition of cognitive psychol-
ogy. The interactions between these perspectives are necessary to achieve an 
understanding of the PFC (Miller and Cohen 2001; Wang 2013). Because PFC 
is implicated in many psychiatric disorders, progress in this area has spurred 
translational research that gave rise to the nascent fi eld of  computational psy-
chiatry (Wang and Krystal 2014).

Neural Network Models of PFC Operations

Fundamental Cognitive Processes

Biologically based neural circuit modeling strives to build mathematical mod-
els across levels, from molecules and cell types to collective neural circuit 
dynamics to functions. In frontal cortex research, this approach was initially 
developed for  working memory, the brain’s ability to internally hold and ma-
nipulate information that is essential to enable mental processes separate from 
direct sensory stimulation. Working memory is commonly studied in the labo-
ratory using delay-dependent tasks, where information about a sensory stimu-
lus must be held internally across a  delay period to guide a behavioral response 
later. Since the discovery of stimulus-selective persistent neural activity during 
a mnemonic delay period (Fuster and Alexander 1971), its circuit mechanism 
was investigated experimentally by Patricia Goldman-Rakic (1995) and oth-
ers, as well as through computational models (Amit and Brunel 1997; Brunel 
and Wang 2001; Compte et al. 2000a). The main idea is that working memory 
in the absence of any external input can be actively sustained by recurrent syn-
aptic excitation. Modeling work found that recurrent excitation must be slow 
and depend on  NMDA receptors (Wang 1999), a theoretical prediction that was 
supported by monkey experiments (Figure 10.1a) (Wang et al. 2013). Thus, 
 slow reverberation is now considered as a characteristic of PFC. This fi nding 
is of clinical interest, because NMDA receptor hypofunction is implicated in 
PFC defi cits associated with  schizophrenia (Coyle et al. 2003).

In the cortex, excitation is balanced by inhibition, which is mediated by 
multiple subtypes of GABAergic cells. Motivated by the need for a work-
ing memory system to “gate out” behaviorally irrelevant stimuli, Wang et al. 
(2004c) proposed a  disinhibitory motif (Figure 10.1b) composed of three in-
terneuron subclasses. While  parvalbumin-positive interneurons control spik-
ing output of  pyramidal neurons, interneurons that express  somatostatin or 
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calbindin target dendrites are well positioned to gate inputs to pyramidal cells. 
When pyramidal cells are inhibited by interneurons that express calretinin or 
vasoactive intestinal peptide, the “gate” would be open, allowing for inputs to 
enter the circuit. This theoretically predicted disinhibitory motif has now been 
well-established experimentally (Tremblay et al. 2016). It is noteworthy that, 
compared to primary sensory areas, the ratio of input-controlling and output-
controlling interneurons is much higher in the PFC, presumably tailored to its 
functional requirements (Wang 2020).

Furthermore, the recurrent neural circuit model initially proposed for 
working memory turned out to be suitable to account for key computational 
processes in decision making, which depends on the PFC, posterior parietal 
cortex and other associated brain regions. Experiments revealed that quasi-
linear ramping neural activity over time underlies accumulated information in 
perceptual decision making (Roitman and Shadlen 2002), which in the model 
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Figure 10.1 Intrinsic circuit properties and dynamics in the prefrontal cortex. (a) 
Dependence of delay period persistent activity on the NMDA receptors in a monkey 
experiment using the ODR task. Average response showing the mean fi ring patterns of 
31 dlPFC delay cells for their preferred (left panel) versus nonpreferred directions (right 
panel) under control conditions (blue) and after iontophoresis of Ro25-6981, a selec-
tive antagonist of NR2B-containing NMDA receptors (red). Ro25-6981 markedly de-
creased task-related fi ring, especially for the neurons’ preferred direction. Reproduced 
from Wang (2013). (b). The model scheme from Wang et al. (2004) with three inhibi-
tory cell subclasses in addition to pyramidal (Pyr) cells: perisoma-targeting (parvalbu-
min-containing, PV), interneurons express somatostatin (SST) or calbindin (CB), VIP 
or calretinin (CR)-containing interneurons. (c) Ramping activity of a recurrent neural 
circuit model for working memory and decision making (Wang 2002).
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is realized by slow reverberation (Figure 10.1c). Attractor dynamics underly-
ing selective persistent activity during working memory produces a categorical 
choice in a decision process (Wang 2002). These results led to the proposal 
of “cognitive-type” cortical microcircuit (Wang 2013). Mathematically, the 
strength of recurrent excitation must exceed a threshold level, when a sudden 
transition called  bifurcation takes place, leading to the functional capability to 
subserve working memory and decision making.

In summary, neural circuit modeling across levels has yielded several sur-
prises: the idea of  slow reverberation mediated by the NMDA receptors, the 
disinhibitory motif, and a common circuit mechanism for working memory 
and decision making.

Behavioral Flexibility

The PFC plays a central role in  behavioral fl exibility, illustrated by the 
 Wisconsin Card Sorting Test as a clinical assessment of frontal lobe function. 
Can the attractor network model be generalized to rule-guided fl exible behav-
ior? Consider a simplifi ed version of the Wisconsin Card Sorting Task. Given a 
sensory cue (a colored shape, e.g., red circle), a subject selects one of two test 
stimuli that matches the cue either in color or shape, depending on the task rule 
(color or shape) (Mansouri et al. 2006). Presumably, the rule that is currently 
valid, say color, is represented internally by persistent activity of “color rule 
cells,” which must be maintained across trials, but switched off  when the rule 
has changed (e.g., from color to shape), signaled by a negative feedback. To 
illustrate the problem (Figure 10.2a), assume that the neural activity (high or 
low, H or L) is determined by two types of inputs: recurrent drive which is high 
or low depending on whether the neuron is active or not (i.e., the internally 
maintained rule is color or shape), and feedback signal which can be positive 
(in which case the activity should stay) or negative (in which case the activity 
should switch). The required input-output mapping amounts to the exclusive 
 OR operation.

The key to solving this problem is to introduce neurons that show condi-
tional responses; for instance, having fi ring that is selectively high for a partic-
ular stimulus only when rule 1 but not rule 2 is currently valid. This reasoning 
led Rigotti et al. (2010) to propose the concept of  mixed selectivity, by add-
ing to a decision-making circuit a large “reservoir” of randomly connected 
neurons (RCNs) (Figure 10.2b). The basic idea is that by virtue of random 
connections, RCNs are naturally activated by a combination of synaptic inputs 
from external stimuli as well as rule-coding neurons (e.g., the color rule is 
currently in play and the network receives a negative feedback signal), and 
such mixed selectivity is exactly what is needed to solve the task. This model 
provides a general framework for describing context- or rule-dependent tasks 
(Rigotti et al. 2010). Figure 10.2c–d shows such a network model for the sim-
plifi ed Wisconsin Card Sorting Test. Notable is the high degree of variability 
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Figure 10.2 A network for  rule-based  behavior. (a) Exclusive or (XOR) computation 
by a cell that encodes the rule “color” in a simple variant of the  Wisconsin Card Sorting 
Task; see text for further details. (b) Neural network architecture: randomly connected 
neurons (RCNs) naturally display mixed selectivity. (c) Firing activity time course for 
fi ve sample neurons. Light pink vertical line: rule switch; light green line: rule stay. 
Top: two rule selective neurons; bottom: three RCNs. (d) Rule selectivity pattern is 
heterogeneous over time and across neurons. Left: rule selectivity for 70 simulated 
cells in the model. For every trial epoch (x-axis) a black bar is shown when the neuron 
had a signifi cantly diff erent activity in shape and in color rule blocks. Neurons are 
sorted according to the fi rst trial epoch in which they show rule selectivity. Right: rule 
selectivity for spiking activity of single units recorded in prefrontal cortex of monkeys 
performing an analog of the Wisconsin Card Sort Task (Mansouri et al. 2006). Adopted 
from Rigotti et al. (2010).
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of fi ring activity, across cells as well as for a single neuron across task epochs. 
Heterogeneity and mixed selectivity are salient yet puzzling characteristics of 
frontal cortical neurons recorded from behaving animals. Our model suggests 
that mixed selectivity is computationally desirable as it allows the network to 
encode a large number of facts, memories, events, and importantly their com-
binations, the latter being critically important for enabling the PFC to subserve 
context- and rule-dependent fl exible behavior. The theoretical proposed con-
cept of mixed selectivity has been supported by analysis of PFC single-neuron 
activity in behaving monkeys, establishing another principle for understanding 
how the PFC works.

More recent work investigated how a single brain area like the PFC may 
subserve many cognitive tasks. With the help of machine learning (Figure 
10.3a), Yang et al. (2019) built a  recurrent neural network capable of perform-
ing 20 cognitive tasks that are commonly used in monkey physiological exper-
iments and which engage various core cognitive functions, including  working 
memory,  rule-based decision making, categorization, and  inhibitory control of 
responses. This model made it possible to examine subportions of the model 
that represent neural clusters engaged in diff erent types of cognitive building 
blocks. Concretely, the extent of engagement in a task by each model neuron 
is measured by a quantity called normalized task variance (Figure 10.3b). The 
task variances of each unit form a vector in the 20-dimensional space of tasks, 
and relationships between units can be assessed using clustering algorithms. 
Units were self-organized into distinct clusters through learning; those belong-
ing to the same cluster are mainly selective in the same subset of tasks. For in-
stance, inhibitory control is often studied using an anti-response task paradigm 
where a salient stimulus is shown, orienting toward it is prepotent but must be 
suppressed; instead, the correct action is a more deliberate response diametri-
cally opposite to the stimulus. Three anti-response tasks (Anti-, reaction time-
Anti, and delayed-Anti) primarily engage a distinct cluster #3 (purple), and 
computationally inactivating units in that cluster impairs only anti-response 
tasks but not the others.

This model needs to be biologically elaborated to provide insights into the 
brain mechanism of  rule-guided behavior. First, it should obey Dale’s law, 
which states that a given neuron contains and releases only one type of neu-
rotransmitter, so that circuit wiring diagram can be identifi ed with separate 
excitatory and inhibitory neurons. Second, as discussed above, gating may in-
volve diff erent inhibitory cell types which can be incorporated into the model. 
Third, the model can be extended to multiple modules that diff erentially en-
code task representation and task rule, guided by sensorimotor mapping.

Distributed Process with Functional Specifi city

While neural correlates of a cognitive function, such as working memory, are 
commonly observed in PFC, they are also present in other parts of the cortex, 
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including the posterior parietal cortex (Leavitt et al. 2017). Because neurons 
are recorded from the intact brain where areas are interconnected, it is not a 
given that neural fi ring in an area related to working memory, even PFC, is 
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Figure 10.3 A  recurrent neural network (RNN) trained to perform 20 cognitive tasks. 
(a) Schematic of model setting. Left: in a trial, the RNN receives a rule cue, sensory 
stimuli, and a fi xation signal when the network should not produce a motor response. 
In this example of motion direction discrimination, the stimulus is shown in mod 1 
pathway. Right: network dynamics with RNN units (top), fi xation unit (middle), motor 
response unit (bottom). (b) Task variances across all tasks and active units, normalized 
by the peak value across tasks for each unit. Units form distinct clusters identifi ed based 
on normalized task variances. Each cluster is specialized for a subset of tasks, such as 
those that involve a mnemonic delay (Dly). A task can involve units from several clus-
ters; for example, delayed match-to-sample (DMS) engages clusters #1, 2, 8, and 10. 
Units are sorted by their cluster membership, indicated by colored lines at the bottom. 
Adapted from (Rigotti et al. 2010).
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generated locally or depends on interactions between multiple areas. As a mat-
ter of fact, studies using modern tools for neurophysiological recording and 
calcium imaging appear to show widespread neural correlates of behaviorally 
relevant attributes, thus raising the question of how distributed representation 
can be reconciled with functional localization.

Mejias and Wang (2022) developed a large-scale model of distributed work-
ing memory using a directed and weighted connectivity for macaque monkey 
cortex of Markov et al. (2014). Figure 10.4a–b show model simulation of a 
visual delayed response task. Notably, responses to an input during stimulus 
presentation occur in the portion of the model that simulates posterior parts of 
the cortex, whereas persistent activity during the delay period displays a spatial 
pattern involving frontal, parietal, and temporal areas of the model. Persistent 
activity of each area plotted as a function of its hierarchical position exhibits 
a gap in the fi ring rate that separates the areas that exhibit mnemonic activity 
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Figure 10.4 Distributed working memory representation in a large-scale monkey cor-
tex model when none of isolated areas is capable of generating persistent activity. (a) 
Model schema is shown on the left; a model simulation of a visual delayed response 
task is shown on the right, where activities of the two excitatory neural populations are 
given for six sample areas. Green: preferred to the shown stimulus; red: nonpreferred 
to it. (b) Activity map is confi ned to the posterior part of the cortex during stimulus pre-
sentation. By contrast, it is distributed in the frontal, parietal, and temporal areas during 
the delay period after stimulus withdrawal. Firing rate is shown in color. (c) Mnemonic 
fi ring rate of the selective neural pool in each area during the delay period is plotted 
as a function of its hierarchical position. Those areas displaying persistent activity are 
separated from those that do not, by a gap in the fi ring rate. Reproduced from Wang 
(2020) with original data from Mejias and Wang (2022).

From “The Frontal Cortex: Organization, Networks, and Function,” edited by Marie T. Banich, 
Suzanne N. Haber, and Trevor W. Robbins. 2024. Strüngmann Forum Reports, vol. 34,  

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 9780262549530



 Computational Models of Prefrontal Cortex 187

from those that do not (Figure 10.4c). This is reminiscent of a bifurcation, but 
it occurs in space rather than as a function of a parameter. The transition is ro-
bust: changes of network parameters would alter the location of cortical tissue 
where the transition occurs and show precisely which areas exhibit mnemonic 
persistent activity but would not abolish the transition itself.

This “ bifurcation in space” phenomenon represents a mechanism for the 
emergence of functional modularity. In the model, parcellated areas follow an 
identical canonical local circuit organization, but certain properties, like the 
strength of synaptic excitation, vary systematically in the form of macroscopic 
gradients calibrated experimentally (Wang 2020). Interareal cortical interac-
tions quantifi ed by the connectomic analysis involve long-range connections, 
which makes it all the more remarkable that the sudden transition can occur 
locally in a multiregional cortex. Thus, working memory is distributed, yet 
depends on a specifi c subset of areas, in contrast to the absence of modularity 
manifest by merely graded variations of engagement across the entire cortical 
mantle. Furthermore, some areas show mnemonic activity as a result of sus-
tained inputs from other core areas, including the PFC. These fi ndings suggest 
a general principle for understanding functional specifi city compatible with 
distributed cognitive processes.

Summary

In close interplay with experiments, theory has produced new concepts like 
 slow reverberation,  disinhibitory motif, cognitive-type microcircuits capable 
of working memory and decision making,  mixed selectivity, and bifurcation in 
space as a mechanism for the emergence of functional modularity in a large-
scale cortex endowed with a canonical circuit architecture. These concepts, 
derived from biologically based cross-level neural circuit modeling, have fur-
thered our understanding of PFC function. Looking ahead, with the prospect of 
new availability of big data (ranging from genomic analysis to connectome to 
large-scale recordings), theory and mathematical modeling are poised to play 
an indispensable role in elucidating the complex inner working of the frontal 
lobe at the core of cognition and intelligence.

Computational Cognitive Models of PFC Function

Reinforcement  learning (RL) is commonly viewed as describing animal (in-
cluding human) basic adaptive behavior. Empirical evidence indicates that the 
 basal ganglia interacts with the premotor cortex and lateral  orbitofrontal cortex 
(OFC) to contribute to RL (and likely along with the insular cortex for  pun-
ishments). RL is a simple, robust, and effi  cient adaptive process. RL, notably 
its temporal-diff erence algorithmic implementation (Sutton and Barto 1998), 
assumes the brain encodes stimulus-action and stimulus-reward associations 
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that refl ect experienced rewards (or punishments). These associations adjust 
online according to the discrepancy between actual and expected  rewards/pun-
ishments encoded in these associations and gradually guide action selection 
toward the most valuable course of actions. We refer to such courses of ac-
tion as selective models. Computational models using RL can learn complex 
selective models to adapt to complex situations. In particular, when action out-
comes depend only on current external states and actions, RL potentially con-
verges toward the behavioral strategy maximizing rewards, regardless of the 
situation complexity (Sutton and Barto 1998). RL is robust to uncertainty and 
contingency changes. While more effi  cient adaptive processes exist and adjust 
faster to changing situations, their gains relative to RL performances are often 
weak compared to their increased computational complexity and are obtained 
at the cost of decreased versatility. For instance, adaptive processes based on 
Bayesian inferences regarding the external contingency volatility and its varia-
tions across time (e.g., Behrens et al. 2007), adjust relatively faster than RL 
in varying volatile environments but perform much less effi  ciently than RL in 
stable environments with sparse environment feedbacks (Findling et al. 2021).

Still, RL exhibits key adaptive limitations. First, RL algorithms learn from 
reward subjective values, which vary according to animals’ internal states or 
needs. For instance, a thirsty animal may learn through RL an effi  cient course 
of actions to obtain water. When the animal becomes hungry, however, this 
course of action becomes ineff ective to get food, and the animal is forced to re-
learn from scratch a new course of action to acquire food. More generally, the 
problem arises because RL algorithms learn from the value rather than iden-
tity of action outcomes. Overcoming this adaptive weakness requires learning 
world models, which we refer to as  predictive models, that link stimuli, actions, 
and outcomes, irrespective of rewarding values. Such predictive models enable 
RL algorithms to operate covertly (a process named model-based RL), accord-
ing to current animal internal states/needs, to build eff ective selective models 
on demand and subsequently act in an effi  cient manner (Gershman et al. 2014; 
Liu et al. 2021). Learning predictive models remains, in principle, a basic pro-
cess that corresponds to register the environment statistics.  Future research is 
needed to understand how the animal is driven to learn such predictive models, 
which appear critical for responding to the ever-changing internal states and 
needs of an animal.

Second, learning and adjusting selective and predictive models in RL is 
achieved by erasing previously learned information. This naturally allows 
these models to adapt to new situations but it also requires the animal to relearn 
entirely these models when situations encountered in the past reoccur at a later 
time. Our natural environment actually features a constant mixture of new and 
recurrent situations: for instance, access to water sources may periodically 
change according to seasons but also suddenly when unique events occur 
like forest fi res. New and recurrent situations are potentially unlimited; that 
is, external contingencies form a potentially infi nite-dimension space, which 
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prevents animals and actually any physical device from learning and para-
metrically adjusting only one comprehensive predictive model of the world. 
Thus, effi  cient adaptations require animals to gradually learn multiple predic-
tive models as discrete entities, ideally as much as the number of encountered 
distinct situations: learned predictive models form a repertoire in long-term 
memory, thus defi ning a fi nite but expanding behavioral space, whose dimen-
sions correspond to the number of situations encountered and perceived as 
distinct. This adaptive process, however, raises complex computational issues 
in terms of how animals identify situational changes or recurrent versus new 
situations as well as how they retrieve previously learned selective/predic-
tive models or learn new models when facing recurrent versus new situations 
(Koechlin 2014).

These two RL adaptive limitations are tightly linked as learning predictive 
models unfold over time and rely on the assumption that the ongoing situa-
tion is identifi ed as remaining unchanged. These limitations appear to be so 
fundamental for effi  cient adaptive behavior that we can reasonably assume 
that the PFC has evolved primarily to overcome them. Another RL functional 
limitation identifi ed is the lack of learning rate adjustments according to the 
change frequencies of external contingencies, often referred to as volatility 
(Behrens et al. 2007). Indeed, effi  cient adaptive behavior requires learning 
rates to increase when volatility increases so as to discount previously learned 
information. Complex probabilistic inference models involving the PFC have 
been proposed to estimate volatility to make such learning rate adjustments 
(Behrens et al. 2007; Payzan-LeNestour and Bossaerts 2011). However, a re-
cent computational study (Findling et al. 2021) shows that counterintuitively, 
such adjustments are likely to derive merely from neural computational impre-
cisions conforming to Weber’s law (the more internal representations change, 
the more imprecise are representation updates) rather than from additional 
volatility estimate processes.

Medial OFC and ACC Overcome RL Adaptive Limitations

Empirical evidence suggests that through RL mechanisms, lateral OFC en-
codes/stores the experienced reward value of stimuli, irrespective of associ-
ated actions (i.e., in a  Pavlovian fashion) (O’Doherty 2007; Rouault et al. 
2019), while the premotor cortex encodes/stores stimulus-action associations. 
Accordingly, lateral OFC provides subjective values of actual action outcomes 
which enables the learning of stimulus-action associations in the premotor cor-
tex likely via the  basal ganglia. Lateral OFC, premotor cortex, and the basal 
ganglia thus form a basic  functional network (possibly along with the insular 
cortex for punishments) that subserves the RL of selective models guiding be-
havior (Soltani and Koechlin 2022).

In contrast, empirical evidence suggests that medial OFC encodes/stores 
the identity of action outcomes (i.e., their probability of occurrences following 
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action selection), along with the associated prospective reward values (Jones 
et al. 2012; Rouault et al. 2019). Based on experienced reward values encoded 
in the lateral OFC, prospective reward values correspond to the current valu-
ation of prospective action outcomes likely based on animals’ internal states 
or needs. This indicates that the medial OFC is likely to encode predictive 
models subserving model-based RL (Chan et al. 2016) to enable RL to operate 
covertly, and through the basal ganglia to readjust selective models encoded 
in the premotor cortex to guide behavior according to animals’ current internal 
states/needs.

Computational models introduced the notion of state beliefs; namely, prob-
ability distributions over predictive models measuring to which extend they 
apply to the current situation or equivalently, their posterior ability to predict 
actual action outcomes through standard probabilistic inference processes 
(Chan et al. 2016).  Computational models further introduced the notion of  ac-
tor reliability—the belief that the predictive model guiding ongoing behavior 
applies to the current situation relative to any known or unknown alternative 
predictive models based on the maximum entropy principle (predictions in un-
known situations are at chance level) (Collins and Koechlin 2012). Critically, 
actor reliability assesses whether the current situation is likely to remain the 
same or has changed; that is, whether the current predictive/selective model 
guiding ongoing behavior (referred to as the actor task set) remains reliable or 
not. In the former case, the corresponding predictive model continues to guide 
behavior and to improve through online learning. In the latter case, this task set 
is inhibited and replaced by another one (see below). Empirical studies provide 
evidence that the medial OFC indeed monitors online actor reliability based on 
actual action outcomes (Domenech et al. 2020; Donoso et al. 2014a).

Thus, the OFC encodes several signals, including experienced stimulus 
values in the lateral OFC, prospective outcome values, outcome probabilities, 
and actor reliability in the medial OFC. All these signals and possibly others 
may potentially guide behavior. A classical view originating in the rational 
decision theory states that to achieve action selection, the signals encoded in 
medial OFC are combined together to compute the subjective expected utility 
of each related behavioral option—a common currency used as a decision vari-
able to arbitrate between the options. Recent computational studies, however, 
suggest that instead, these diff erent signals independently compete and concur-
rently contribute to action selection within the  ACC, after each signal type is 
normalized across available actions (Cao and Tsetsos 2022; Farashahi et al. 
2019; Rouault et al. 2019). These studies show that these contributions are not 
weighted equally at choice time with the predominance of medial OFC signals 
related to predictive models. The weighting also varies depending upon the 
environment characteristics. For instance, the more volatile the environment, 
the less outcome probability signals were shown to predominate, in agreement 
with the fact that volatile environments prevent an organism from forming 
precise predictive models (Farashahi et al. 2019). Exactly how the weighting 
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is determined remains an open issue. A possible hypothesis is that the weight-
ing naturally arises from neural reciprocal interactions between the ACC and 
OFC regions rather than deriving from additional  higher-order computational 
processes. For instance, less precise predictive models are likely encoded with 
increased neural variability in medial OFC, which in turn should weaken their 
remote infl uence on the ACC.

It is also likely that following action outcomes, actor reliability signals play 
a predominant role. Indeed, the medial OFC was observed to signal proac-
tively that the situation might have changed right before experiencing action 
outcomes (i.e., the actor reliability is deemed as uncertain), leading the ACC 
to process actual action outcomes as confi rming or denying this medial OFC 
prediction. ACC was observed to process actual action outcomes as a trigger to 
inhibit and switch away from the ongoing predictive model or to stay with the 
same predictive model to guide subsequent behavior (Domenech et al. 2020). 
Thus, the ACC is modeled as inducing behavior to switch to undirected ex-
ploration corresponding to the formation and learning of a new predictive and 
selective model (i.e., a new actor task set for guiding subsequent behavior). 
Computational models further propose that this new actor is fi rst built from 
mixing previously learned predictive and selective models stored in long-term 
memory according to actual action outcomes and then adjusts subsequently 
to actual external contingencies (Collins and Koechlin 2012; Koechlin 2014) 
(see Figure  10.5). As the medial OFC monitors actor reliability, this new actor 
may eventually be deemed as reliable, in which case its selective and pre-
dictive model are consolidated in long-term memory to contribute to creating 
new actors in the future. Neural correlates of such covert confi rmation events 
based on actor reliability were observed within the basal ganglia in the ven-
tral  striatum, which receives direct projections from medial OFC (Donoso et 
al. 2014a). In addition, once the new actor is deemed reliable, it will likely 
become unreliable at some point, in which case a new actor creation process 
will be triggered again. Although the neural mechanisms involved in the actor 
creation and consolidation processes remain poorly specifi ed, we presume that 
these processes which rely on long-term memory involve a large network of 
brain regions, notably outside the PFC, which along basal ganglia certainly 
comprises the  hippocampus, known for its central role in memory retrieval 
and world model constructs (e.g., Whittington et al. 2020). In this view, the 
medial OFC and ACC control only when to create and consolidate new ac-
tors whereas the creation and consolidation processes per se appear to unfold 
outside PFC control. Importantly, the computational model combining actor 
reliability monitoring, actor creation, and consolidation shows that the reper-
toire of task sets that comprise joint selective and predictive models, stored in 
long-term memory, extends in a way that associates more recurrent situations 
with task set replicas in long-term memory. As a result, actor creation relies 
more extensively on task sets associated with more recurrent situations. This 
computational model forms the optimal adaptive process with the constraint 
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that only actor reliability is inferred online from action outcomes (Collins and 
Koechlin 2012).

Lateral and Frontopolar PFC Overcome OFC and ACC 
Adaptive Control Limitations

As described above, the medial OFC and ACC, in association with  basal 
ganglia, form a consistent and  effi  cient system that controls adaptive  behav-
ior in uncertain, changing, and open-ended environments beyond basic RL 
processes. Nonetheless, this medial PFC system exhibits three key functional 
limitations:

1. Actor reliability is inferred only from actual action outcomes, so that 
switching away from the current actor occurs only after experiencing 
actual action outcomes.  This might be especially detrimental in case of 
adverse action outcomes.

2. Actor creation ignores the context in which selective/predictive models 
were learned, which may lead actor creation to start guiding behavior 
using maladaptive task sets (i.e., selective/predictive models) stored 
in long-term memory. For instance, the selective/predictive models I 
learned when interacting with people at work might not be well adapted 
when I interact with my roommates and vice versa.

3. By monitoring only actor reliability, the system is constrained to make 
irreversible decisions, when switching away from the current actor and 
creating new actors (actor creation cannot be reversed to re-instantiate 
a new actor creation).

In other words, the medial OFC-ACC system lacks fl exibility, which is espe-
cially detrimental when dealing with discrete entities such as task sets (i.e., 
in non-parametric inferences). We have proposed that the evolution of lateral 

Figure 10.5 Model of rodent  PFC function. (a) Schematic representation of the rodent 
brain; PFC includes the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) 
to manage the creation of actor task sets to guide behavior. Task sets comprise selective 
and predictive models (i.e., stimulus-action associations and stimulus-action-outcome 
associations, respectively). Selective models are encoded in motor/premotor cortices; 
the OFC encodes predictive models. (b) Diagram showing inferential and creative pro-
cesses composing the rodent PFC function. OFC infers actor reliability λ (i.e., to predict 
action outcomes and monitor when the situation changes). While the actor remains 
reliable (λ > 1 – λ), the actor drives behavior and adjusts its internal models (learning, 
exploitation periods). ACC detects when the actor becomes unreliable (λ < 1 – λ) and the 
situation has presumably changed. ACC inhibits the unreliable actor and triggers the 
creation of a new actor. Actor creation results from mixing task sets stored in long-term 
memory (square) yielding to forming an unreliable actor. While this newly created ac-
tor remains unreliable, it drives behavior and learns external contingencies (exploration 
period). Once it becomes reliable, it is consolidated in long-term memory, and a new 
exploitation period starts to create new actors from long-term memory. Reproduced 
from Koechlin (2020).
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PFC in primates overcomes the fi rst two limitations, while further evolution of 
the frontopolar PFC in humans overcomes the third (Koechlin 2014).

There is ample empirical evidence that  lateral PFC is involved in switching 
between sensorimotor mappings according to contextual cues. Computational 
cognitive studies in humans further show that stimulus-action associations are 
spontaneously learned and aggregated into clusters/chunks indexed by con-
textual cues (Collins and Frank 2013). Such clustering processes, which lead 
to hierarchical selective models, were shown to occur in posterior lateral PFC 
(Badre et al. 2010). These results also indicate that the actor task set guiding 
behavior comprises an additional internal model—the contextual model—that 
links the actor to contextual cues. Accordingly, actor contextual models can be 
modeled as learning to which extent external cues are predictors of actor reli-
ability (Collins and Koechlin 2012; Koechlin 2014). Thus, lateral PFC enables 
actor reliability to be inferred from contextual cues and to switch away from 
the current actor proactively when such cues occur before acting and experi-
encing action outcomes (see Figure 10.6). Moreover, contextual models en-
able the contribution of task sets stored in long-term memory to actor creation 
to be weighted according to the current context of action. As a result, actor 
creation relies mostly on task sets which were possibly learned previously in 
similar contexts. In particular, when current contextual cues were previously 
associated with specifi c task sets, actor creation operates as if directly retriev-
ing such task sets from long-term memory. Indirect empirical evidence from 
cognitive control and memory retrieval studies suggests that such cue-based 
inferences about the reliability of actors and actor creation involve mid-lateral 
PFC (Koechlin et al. 2003; Nee and D’Esposito 2016, 2017). The resulting ex-
ecutive system that spans the medial PFC (comprising medial OFC and ACC) 
and lateral PFC form an optimal adaptive system with the constraint that only 
actor reliability is inferred online (Koechlin 2014).

As noted above, this constraint implies irreversible decisions and yields a 
system that lacks fl exibility to switch back and forth between multiple poten-
tial actors guiding behavior. Computational models indicate that overcoming 
this limitation requires inferring online the reliability of potential alternative 
task sets in addition to the current actor task sets guiding ongoing behavior 
(Collins and Koechlin 2012). For clarity, we refer to such potential alternative 
actors as counterfactual task sets, which as the current actor, consist of selec-
tive/predictive/contextual models forming consistent, discrete executive enti-
ties. Inferring in parallel the online reliability of multiple task sets is benefi cial 
in many respects:

1. Reliability inference is improved as each task set now measures to 
which extent its predictive model applies to the current situation rela-
tive to the other task set predictive models along with any additional, 
unknown/unmonitored predictive models.
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Figure 10.6 Model of monkey PFC function. (a) Schematic representations of the 
monkey medial and lateral cerebral cortex. Compared to rodents, monkey PFC has an 
additional lateral prefrontal cortex (laPFC) comprising a middle and caudal sector. In 
monkeys, task sets are assumed to comprise contextual models (associating task set to 
external cues) encoded in the laPFC. Contextual models indexing task sets are repre-
sented in the middle laPFC and allow chunking processes in caudal laPFC to operate 
within task sets (see text). (b) Illustration of the inferential and creative processes in the 
monkey PFC function. Inferential processes are similar to those in rodents (see Figure 
10.5), except that contextual models enable the updating of actor reliability according 
to the occurrences of external cues (in addition to action outcomes). Actor creation may 
thus occur proactively. Contextual models also have a major role in refi ning actor cre-
ation: the mixture of task sets in long-term memory is now weighted by current external 
cues according to contextual models. As a result, new actors may be created as immedi-
ately reliable (λp > 1 – (λp). In that event, the exploration period is skipped, leading to the 
ability to recreate new actors much more rapidly. Reproduced from Koechlin (2020).
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2. When a counterfactual task set becomes reliable (implying that the cur-
rent actor task set is deemed unreliable), the system simply switches 
to this counterfactual task set to replace the current actor and guide 
subsequent behavior, while the current actor guiding ongoing behavior 
becomes a counterfactual task set.

3. When no task sets are deemed as reliable, actor creation from long-
term memory occurs for guiding subsequent behavior, while the cur-
rent actor again become a counterfactual task set.

4. Actor creation may be rejected later on, whenever a counterfactual task 
set becomes reliable, while the newly created actor is still not deemed 
as reliable, preventing the newly created actor task set from being con-
solidated in long-term memory.

The resulting actor creation process thus resembles hypothesis testing: a new 
hypothesis (the newly created actor task set) is tested against alternative hy-
potheses (the counterfactual task sets) based on the acquisition of additional in-
formation from action outcomes or contextual cues. This computational model 
forms an optimal adaptive algorithm in uncertain, changing, and open-ended 
environments with the following constraint:  only a limited number of counter-
factual actors can be monitored online in parallel (see Figure 10.7). This com-
putational model was shown to account well for human performances in such 
environments and performed better than several alternative models. Model 
fi tting to human performances further suggests that humans monitor online 
no more than three counterfactual task sets in parallel (Collins and Koechlin 
2012). When this capacity limit is reached, the least recently used counter-
factual task set is simply discarded from online monitoring, while remaining 
stored in long-term memory. Furthermore, empirical evidence shows that the 
human  frontopolar cortex monitors the reliability of counterfactual task sets 
(Donoso et al. 2014a; Mansouri et al. 2017), and as mentioned before, the cur-
rent  actor reliability is monitored in medial OFC. Rejecting actor creation to 
select a counterfactor task set monitored in the frontopolar cortex and deemed 

Figure 10.7 Model of  human PFC function. (a) Schematic representations of the 
human cerebral cortex. Compared to monkeys, human PFC comprises a frontopolar 
region (poPFC) in the lateral forefront of the PFC with no known homologues in mon-
keys. In humans compared to monkeys, task sets are likely to comprise two nested, 
abstract levels of chunking, involving BA 44 and 45, and may play a major role in 
language (see text). (b) Inferential, selective, and creative processes forming the human 
PFC function. Compared to monkeys (see Figure 10.6), the human poPFC forms an in-
ferential buff er to infer and monitor the reliability of additional task sets (counterfactual 
task sets) in addition to the actor task set monitored in the medial OFC. This additional 
inferential capability endows humans with the ability to retrieve a counterfactual task 
set directly to drive behavior when it becomes reliable, in both exploitation and explo-
ration periods. During exploration, this ability yields newly created actors to be rejected 
and disbanded and corresponds to hypothesis testing bearing upon task set creation. 
Reproduced from Koechlin (2020).

From “The Frontal Cortex: Organization, Networks, and Function,” edited by Marie T. Banich, 
Suzanne N. Haber, and Trevor W. Robbins. 2024. Strüngmann Forum Reports, vol. 34,  

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 9780262549530



Computational Models of Prefrontal Cortex 197

Parietal
lobe

Occipital
lobe

Temporal lobe Temporal lobe

Occipital
lobe

...

...

ActionOutcome

...

...

p

Exploitation

Exploitation

Time

Exploitation

task sets

A.O.

ACC

St
im

ul
us

Cues Cues

Lateral
PFC

S.

task set

select.
model

predict.
model

contextual
model

S   A S,A O 

Cues 

Medial
PFC

Parietal
lobe

chunks

super. chunks

i j k i j k p

pji k

j k p

C.

i ...

i k j

j
(reject p for j)

A.O.

S.

C. A.O.

S.

C.

...

k j i

A.O.

S.

C.

i

Exploration

(retrieve i)

OFC
poPFC

Lateral
PFC

(a)

(b)

From “The Frontal Cortex: Organization, Networks, and Function,” edited by Marie T. Banich, 
Suzanne N. Haber, and Trevor W. Robbins. 2024. Strüngmann Forum Reports, vol. 34,  

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 9780262549530



198 E. Koechlin and X.-J. Wang 

as reliable to guide subsequent behavior was further found to involve mid-
lateral PFC (Donoso et al. 2014a). Thus, this computational model suggests 
that the human frontopolar cortex forms a capacity-limited online monitoring 
buff er that allows switching back and forth across several potential task sets 
to guide behavior and regulate the online creation and storage of task sets in 
long-term memory through hypothesis-testing processes.

It is worth noting that the true optimal adaptive model requires additional 
features:

• A monitoring buff er with unlimited capacity, so that the reliability of all 
created task sets is inferred in parallel.

• Reliability inferences are not limited to online forward inferences but 
also involve critically offl  ine backward inferences to enable constant 
online revision of actor creation.

• Actor guiding behavior is the continual parametric mixture of all cre-
ated task sets weighted by their reliability.

More precisely, the optimal adaptive model involves mixtures of Dirichlet 
processes that generalize Bayesian inferences to open-ended environments 
(Doshi-Velez 2009; Gershman et al. 2010; Teh et al. 2006), but whose com-
putational costs are exorbitant and even intractable, thereby hindering its op-
timality in practice. Accordingly, we have reviewed evidence that the human 
PFC has evolved as capturing tractable algorithmic approximations of key 
computational components underlying optimal adaptive behavior:

• Monitoring (a limited number of) multiple potential task sets,
• A minimal form of backward inferences through hypothesis testing in-

volved in actor creation (creating new actors may be revised later on), 
and

• Mixing all created task sets weighted by contextual models when actor 
creation occurs to guide behavior.

Newly created actors are thus parametric mixtures of previously learned selec-
tive, predictive, and contextual models. Note that in contrast, mixing the task 
sets monitored in a capacity-limited buff er according to their relative reliability 
to guide behavior is detrimental, because the proper task set might actually be 
stored in long-term memory without being monitored.

Higher cognition comprising  planning, reasoning, and language production 
might simply refl ect the functioning of this whole computational PFC archi-
tecture (Koechlin 2020). As noted above, planning amounts to covertly navi-
gating within the  current actor  predictive model through model-free RL using 
the actor task set. Reasoning can amount to combining reliability inferences 
about several potential task sets viewed as multiple behavioral hypotheses 
with hypothesis-testing regarding actor creation viewed as hypothesis genera-
tion. Language production may amount to actor creation viewed as generating 
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linguistic sentences in reciprocal interactions with the superior temporal sulcus 
through the arcuate fasciculus (Rouault and Koechlin 2018).

What Drives Learning in Predictive Models

The preceding sections outline the key role of  predictive models for effi  cient 
adaptive behavior. Predictive models as “world models” predict potential ac-
tion outcomes, enable adjustment of selective models to internal states/needs, 
and have the ability to carry out planning covertly, and to detect situational 
changes that may result in actor changes through  actor  reliability inferences. 
We indicated above that learning predictive models is based simply on reg-
istering the experienced environmental contingencies. This could happen on 
the fl y while other incentives, such as rewards, are driving animals’ behavior. 
Given the critical role of predictive models, we reason that learning predictive 
models might also be an intrinsic motivation driving animals’ behavior.

The classical theory is that animals/humans’ behavior is primarily driven 
through the maximization of subjective rewards (e.g., Schultz 2015). To be 
effi  cient,  reward maximization requires deviating episodically from what 
was learned as the most rewarding course of action and to explore alternative 
courses of action so as to avoid being trapped in local reward maxima. In this 
view, predictive models are learned on the fl y; there are no specifi c incentives 
to learn them.

Another theory proposes that animals/humans’ behavior is primarily driven 
by minimizing expected free-energy or “expected surprise” (Friston 2010): 
behavior aims at producing outcomes expected from predictive models, and 
predictive models are adjusted according to actual action outcomes. Under 
this view, potential subjective rewards are absorbed as highly expected out-
comes in predictive models. The theory off ers a general, principled view of 
adaptive behavior, revealing that behavior is centered on learning adequate 
predictive models and acting accordingly. The theory has, however, two key 
limitations. First, it assumes that agents have an exhaustive representation 
of all potential situations (latent states) they may encounter, corresponding 
to as many task sets that they monitor in parallel to form beliefs about their 
occurrences. This assumption is unrealistic in real-life environments that fea-
ture unlimited potential situations. As noted above, biological systems and 
physical devices are limited inasmuch as they only monitor a small fraction 
of potential situations/task sets. Discussion in the preceding sections actually 
outlines the optimal adaptive system, when the monitoring/inferential capacity 
is assumed to be limited and suggests that the  evolution of PFC implements 
this capacity-limited adaptive system. Second, and more problematically, the 
theory relies on an arbitrary parametrization of potential subjective rewards 
aimed at transforming them into outcome expectations to absorb them into 
predictive models. This is problematic because parametrization actually deter-
mines the critical balance between reward- and information-seeking behavior; 
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that is, between exploitation and exploration. Accordingly, the theory appears 
to defi ne this balance arbitrarily with no accounts of how it is determined and 
possibly controlled.

To address this issue, we proposed an alternative theory at FENS 2022, 
based on the fundamental principle of statistical physics. In contrast to Friston’s 
free-energy theory, it distinguishes between the notion of energy and entropy 
which translate here to the notion of reward as energetic resource and informa-
tion as negative entropy (Vaillant-Tenzer and Koechlin 2023). The general idea 
is that behavior aims at primarily maximizing expected information gain with 
the homeostatic constraint to maintain enough energetic resources (i.e., to get 
enough rewards compensating resource consumption) to pursue this informa-
tion quest. (Note that unlike biological systems, physical systems “behave” in 
the converse way as maximizing their entropy with the constraint of maintain-
ing their energy constant.) Within the computational framework outlined in the 
preceding sections, maximizing expected information gain means selecting ac-
tions where the outcomes are expected from the  current actor predictive model 
to best improve predictive power or equivalently to best reduce its predictive 
entropy/uncertainty. The “statistical physics” formalization of this principle 
leads to the hypothesis that behavior aims at maximizing the weighted sum 
of expected subjective rewards and expected information gain within the cur-
rent actor predictive model. Critically, the weighting of expected subjective 
rewards relative to information gain is fully determined by the Lagrangian 
multiplier relative to the homeostatic constraint. This Lagrangian multiplier 
is not computable in closed form but varies approximately as the inverse 
of the total amount of agent’s energetic resources and consequently as the 
inverse of accumulated rewards over time. Accordingly, the more an agent is 
deprived, the more it will exhibit reward-seeking behavior. The more an agent 
accumulates rewards, the more it will exhibit information-seeking behavior. 
The more an agent acquires predictive knowledge of the current situation (i.e., 
expected information gain will vanish), the more it will exhibit reward-seeking 
behavior. Thus, the hypothesis predicts a complex dynamic balance between 
reward- and information-seeking behavior. For instance, when an agent faces 
a new, unknown situation, information-seeking behavior will fi rst dominate 
as expected information gains within the  current actor predictive model are 
initially at a maximum: thereafter, reward-seeking behavior will begin to 
dominate as expected information gains start to decline. Next, when received 
rewards start accumulating, information-seeking behavior will emerge again. 
And so on. The hypothesis thus predicts that the balance between reward- and 
information-seeking depends on the agent’s homeostatic states and is likely 
mediated by brain regions monitoring such homeostatic states. A possible 
candidate where this occurs is the anterior insular cortex, which has been 
recently associated with homeostasis monitoring and which widely projects 
to medial PFC regions (Livneh et al. 2020).
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Concluding Remarks

In this chapter, we have described the modeling of neural networks and cogni-
tive computations subserving PFC function in two distinct sections. This di-
vision is unrelated to any distinctions between the classical Marr’s levels of 
brain analysis—namely the physical, representational, and functional level—
whereby the functional level describes the function of one system, the rep-
resentational level how this function is achieved, and the physical level the 
material device realizing this function (Marr 1982). Both sections indepen-
dently entail descriptions at all of the three levels. For instance, the fi rst section 
describes the working memory function, whereas the second addresses the reli-
ability monitoring function. The fi rst section describes diff erent classes of in-
hibitory neurons, whereas the second section describes diff erent cortical areas 
in the PFC and so on. Instead, the fi rst and second section address functional, 
representational, and physical issues at two distinct scales of brain organiza-
tion: at the neuronal and cortical scale, respectively. The two sections refl ect 
the idea that the functional, representational, and physical concepts diff er be-
tween these two scales of analysis.

We view these conceptual diff erences across scales as similar to those pres-
ent in physics. For instance, pressure makes sense at the scale of gas volumes 
but not at the level of gas molecular constituents. This does not imply that 
there are no connections between the elements describing the diff erent levels 
of brain organization. On the contrary, quantitative models are especially use-
ful, if not necessary, to understand how the diff erent organization levels are 
connected and interact with each other. To date, however, there is little model-
ing work that aims to link the diff erent neuronal and cortical levels in the PFC, 
in the way as in the visual system, models of cortical maps, and hierarchical 
visual processing have been developed. Filling this gap will certainly be an 
important future avenue in developing models and understanding frontal lobe 
function.
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